美林数据基于产业侧所沉淀的行业标准、产业数据、技术产品、行业应用及咨询认证相关能力,以产业链、人才链、数据链相融合的理念,构建数智人才培养的新生态,进而形成符合产业人才需求、并适应于高校人才培养模式的数智人才应用能力解决方案。
为你推荐
RECOMMEND FOR YOU
tempo talents数智人才应用能力解决方案
美林数据依托丰富数字化技术与超过3000个产业数字化服务实战案例的积累,将产业实践与高校教育紧密结合,形成“以产促教、以教助产”的良性循环,全力助推高校数智化人才的培养。至今,已成功助力全国超过300所高校,为数智人才培养贡献美林力量。
为你推荐
RECOMMEND FOR YOU
tempo talents数智人才应用能力解决方案
美林数据将以产业实践为基础、数字经济时代的高质量人才供给为目标,聚焦行业用人需求,以大数据人才“应用能力”培养为核心,为大数据产业高质量发展和数字中国建设贡献了美林智慧与力量。
为你推荐
RECOMMEND FOR YOU
tempo talents数智人才应用能力解决方案
400-608-2558

产业应用

为不同行业客户提供数据管理、分析展现、深度挖掘的数据运营方案,帮助企业实现内部业务信息系统数据化,数据价值化的全面升级

电力

能源行业风电机组性能劣化预警

项目背景

风力发电作为新能源产业技术之一,已得到社会各方面的全面认可。但是由于自然环境和负荷不稳定等因素,导致风电机组在使用过程中,机组部件会逐渐磨损和腐蚀、断裂,最终引起故障而停机或者大部件损坏。从而进行风电机组性能劣化预警,及时掌握部件损坏情况,在机组部件进入故障前,进行隐患排查、修理及更换,是提升风力发电的安全性和经济性的必要手段。

问题与挑战

1、不能忽视的时序。风机机组性能劣化是一个具有时间跨度的现象,无法依据单点检测判定是否发生劣化,需要综合一段时间内的机组运行数据分析机组在一段时间内是否发生劣化。如图是风速和功率散点图:

1

2、劣化的强相关联。风机机组劣化是一个动态过程,同一时刻某一劣化现象往往会引起另一劣化现象,所以需要将每一种劣化割裂开进行分析。
3、二维世界的损失。风机机组数据是一段时间内的积累,反应了风速和功率曲线形态上,时间作为第三维数据无法体现,而时间是风电机组性能劣化预警的重要因素。

解决方案

利用机器学习算法,分析与风机劣化的相关的影响因素,构建基于风机功率曲线的劣化分类模型。引入时间平移窗口,将时序考虑进算法模型,分析机组劣化开始和结束时间。

劣化类型预测

引入机器学习算法,分析风机机组不同劣化现象的影响因素,探索风机劣化原因。利用图像处理技术,提取机组功率特性曲线特征,构建分类模型,预测风机机组劣化类型,劣化类型包括离散点离散度大、起点偏移、出现限负荷点、曲线形态异常等。

劣化起止时间

以时间小窗口为切入点,动态分析机组功率特性曲线的变化过程,利用劣化分类模型分析不同时间出现不同类劣化的起止时间。

应用价值

预警风电机组性能劣化

建立风电机组性能劣化预警模型,离线或在线批量预警风电机组性能劣化,分析各类劣化原因,确定劣化发生时间。

保证风电机组可靠运行

准确把握机组的实时运行状态,并对其早期缺陷及时预警,有助于防范机组严重故障的发生。

推动风力发电技术发展

风电场引入风电机组性能劣化预警,保证风电场发电机组安全运行,提升风力发电的安全性和经济性,促进风力发电技术蓬勃发展。

end

上一篇:电力行业非结构化数据一站式搜索

下一篇:能源大数据之联合动力机组齿轮箱故障预警

立即免费申请产品试用
热门标签Popular tags
网站地图
解决方案
数据科学与大数据技术专业
大数据管理与应用专业
数字经济专业
人工智能专业
大数据技术专业
专业+大数据
数据治理人才培养解决方案
工业互联网实验实训解决方案
院校级数字化素养赋能服务解决方案
区域级产教融合大数据应用创新解决方案
客户故事
产业实践
合作高校
用户声音
协同育人
数据超市
电力
煤炭
油气
水务
制造
工商
电商
零售
交通
数实融合智力服务
关于我们
美林数据
应用场景
专家团队
生态合作
服务体系
新闻动态
行业资讯